Discovering Multi-Level Association Rules using Fuzzy Hierarchies
نویسندگان
چکیده
In this paper, Fuzzy concept hierarchies are used for multi-level association rule mining from large datasets via Attribute-Oriented Induction approach [1]. In this the process of fuzzy hierarchical induction approach is used and extends it with two new characteristics which improve applicability of the original approach in data mining. The proposed drilling-down approach of fuzzy induction model allows user to retrieve estimated explanations of the generated abstract concept. An application to discovery of multi-level association rules from environmental data stored in a Toxic Release Inventory is presented.
منابع مشابه
Multi-level Association Rule Mining: an Object-oriented Approach Based on Dynamic Hierarchies
Previous studies in data mining have yielded e cient algorithms for discovering association rules. But it is well-known problem that the two controlling measures of support and con dence, when used as the sole de nition of relevant association rules, are too inclusive | interesting rules are included with many uninteresting cases. A typical approach to this problem is to augment the thresholds ...
متن کاملMining Multi Level Association Rules Using Fuzzy Logic
Extracting multilevel association rules in transaction databases is most commonly used tasks in data mining. This paper proposes a multilevel association rule mining using fuzzy concepts. This paper uses different fuzzy membership function to retrieve efficient association rules from multi level hierarchies that exist in a transaction dataset. In general, the data can spread into many hierarchi...
متن کاملMining Multi-Level Frequent Itemsets under Constraints
Mining association rules is a task of data mining, which extracts knowledge in the form of significant implication relation of useful items (objects) from a database. Mining multilevel association rules uses concept hierarchies, also called taxonomies and defined as relations of type 'is-a' between objects, to extract rules that items belong to different levels of abstraction. These rules are m...
متن کاملEvolutionary algorithms and fuzzy sets for discovering temporal rules
A novel method is presented for mining fuzzy association rules that have a temporal pattern. Our proposed method contributes towards discovering temporal patterns that could otherwise be lost from defining the membership functions before the mining process. The novelty of this research lies in exploring the composition of fuzzy and temporal association rules, and using a multi-objective evoluti...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کامل